Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dichloro($\boldsymbol{\eta}^{\mathbf{6}}$ - \boldsymbol{p}-cymene) $\left[\boldsymbol{\eta}^{\mathbf{1}}\right.$-(2,4,6-tri-tert-butylphenyl)phosphine- κ P]osmium(II)

Bruno Therrien ${ }^{\mathrm{a} *}$ and Anthony K.

 Burrell ${ }^{\text {b }}$${ }^{\mathrm{a}}$ Institut de Chimie, Université de Neuchâtel,
Case postale 2, CH-2007 Neuchâtel, Switzerland, and ${ }^{\mathbf{b}}$ Actinide, Catalysis and Separations Chemistry, C-SIC, Mail Stop J514, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Correspondence e-mail:
bruno.therrien@unine.ch

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
Disorder in main residue
R factor $=0.031$
$w R$ factor $=0.081$
Data-to-parameter ratio $=19.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $\left[\mathrm{Os}\left(\mathrm{C}_{10} \mathrm{H}_{14}\right) \mathrm{Cl}_{2}\left(\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{P}\right)\right]$, The presence of bulky substituents imposes a structural distortion on the (2,4,6-tri-tert-butylphenyl)phosphine ligand, which is bowed.

Comment

The title complex, (I), has previously been synthesized and used as a starting material to form terminal phosphinidene complexes, but it has not been structurally characterized (Termaten et al., 2003). We report here a modified synthesis and the single-crystal structure analysis of (I), a sterically hindered complex. The compound was prepared quantitatively from $\left[\mathrm{OsCl}_{2}(p \text {-cymene })\right]_{2}$ (Kiel et al., 1990) and (2,4,6-tri-tert-butylphenyl) PH_{2} (Cowley et al., 1990), following the procedure described for the synthesis of $\left[\mathrm{RuCl}_{2}\left(\eta^{1}-\right.\right.$ $\left.\mathrm{PH}_{2} \mathrm{Cy}\right)\left(\eta^{6}\right.$ - p-cymene)] (Van der Maelen Uría et al., 1994).

(I)

The p-cymene ring can be considered planar [the maximum deviation of atoms C2-C7 from the mean plane is 0.009 (3) A]. The isopropyl group is bent towards the Os atom [the deviation from the plane is 0.100 (8) \AA for C8], while the methyl is bent away [the deviation from the ring plane is 0.056 (7) \AA for $\mathrm{C} 1]$. The distance between the centroid of the p-cymene ring and the Os atom is 1.701 (12) \AA. The molecular structure and the atomic numbering scheme are presented in Fig. 1. Selected bond lengths and angles are given in Table 1.

The presence of tert-butyl groups on the arene substituent of the phosphine generates a significant distortion of the ligand. To minimize the interaction with the chloro and p-cymene ligands, the phosphine ligand is bowed. Atoms P and C25 are, respectively, 0.985 (5) and 0.278 (8) \AA above the $\mathrm{C} 11-\mathrm{C} 16$ aromatic plane [the maximum deviation of atoms $\mathrm{C} 11-\mathrm{C} 16$ from the mean plane is 0.069 (3) \AA]. The two other tert-butyl groups, involving atoms C 17 and C21, are bent away from the Os atom, by, respectively, 0.425 (7) and 0.458 (7) \AA from the C11-C16 plane.

Received 11 May 2004 Accepted 21 May 2004 Online 29 May 2004

Experimental

To a benzene solution of $\left[\mathrm{OsCl}_{2}(p-\text { cymene })\right]_{2}(154 \mathrm{mg}, 0.22 \mathrm{mmol})$ were added 2 equivalents of ($2,4,6$-tri-tert-butylphenyl)phosphine $(144 \mathrm{mg}, 0.44 \mathrm{mmol})$. The solution was stirred overnight and the volatile subtances were removed under vacuum. The solid was washed with cold diethyl ether to give (I) quantitatively. Crystals suitable for X-ray diffraction were grown by slow diffusion of pentane into a dichloromethane solution. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.55(s$, $2 \mathrm{H}), 6.56\left(d, 2 \mathrm{H},{ }^{1} J_{\mathrm{PH}}=392 \mathrm{~Hz}\right), 5.37(d, 2 \mathrm{H}), 5.07(d, 2 \mathrm{H}), 2.63$ (sept, $1 \mathrm{H}), 2.06(s, 3 \mathrm{H}), 1.54(s, 18 \mathrm{H}), 1.36(s, 9 \mathrm{H}), 1.24(d, 6 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-55.7$.

Crystal data

$\left[\mathrm{Os}\left(\mathrm{C}_{10} \mathrm{H}_{14}\right) \mathrm{Cl}_{2}\left(\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{P}\right)\right]$
$M_{r}=673.71$
Monoclinic, $C 2 / c$
$a=15.3347$ (2) £
$b=13.0280(2) \AA$
$c=31.6125$ (4) \AA
$\beta=102.678$ (1) ${ }^{\circ}$
$V=6161.58(15) \AA^{3}$
$Z=8$

$$
\begin{aligned}
& D_{x}=1.453 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 6588 \\
& \quad \text { reflections } \\
& \theta=1.3-26.7^{\circ} \\
& \mu=4.38 \mathrm{~mm}^{-1} \\
& T=150(2) \mathrm{K} \\
& \text { Plate, orange } \\
& 0.28 \times 0.20 \times 0.03 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens SMART CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.374, T_{\text {max }}=0.880$
18106 measured reflections

The molecular structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity, as has the minor disorder component of a tert-butyl group.
appears to be disordered over two positions (C26-C28). The occupancy factors were initially allowed to refine freely; as they were nearly in the ratio $0.7 / 0.3$, the occupancy was then fixed at exactly $0.7 /$ 0.3 .

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

BT thanks the Massey University Research Fund for a fellowship. We also thank Professor Rickard at the University of Auckland for the data collection.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-8.
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cowley, A. H., Norman, N. C. \& Pakulski, M. (1990). Inorg. Synth. 27, 235-237. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kiel, W. A., Ball, R. G. \& Graham, W. A. G. (1990). J. Organomet. Chem. 383, 481-496.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Termaten, A. T., Nijbacker, T., Schakel, M., Lutz, M., Spek, A. L. \& Lammertsma, K. (2003). Chem. Eur. J. 9, 2200-2208.
Van der Maelen Uría, J. F., García-Granda, S., Cabeza, J. A. \& del Río, I. (1994). Acta Cryst. C50, 1064-1065.

